

Crowd Guru - DataAPI

v1.13.75

Introduction

Crowd Guru provides mikrotasking capabilities for pretty much any scenario that can be

solved via webforms. Those tasks get done by setting up “jobs” on our platform that our

“Gurus” work on.

Our jobs use datasources. These datasources can be accessed with our API so you can seed

your job units whenever you need to.

The incoming data e.g. will be used by our gurus to complete jobs.

The resulting datasets could be posted to a custom URL on completion or you pull the data

whenever you want via the API.

Basics
Every job gets a unique identifier. So you might have one job to push data to us and another

where you retrieve your completed units from because we might have a quality assurance job

active for you. We will give you a short summary of the URLs during setup.

We have a standard format for our API. You cannot change or define this URL at your own,

please contact it@crowdguru.de for your specific request-URL.

https://<username>:<password>@crowdmodul.crowdguru.de/api/<jobId>

We only offer SSL encrypted connections. Username, Password and jobId will be provided by

us. Don’t add slashes at the end of the URL.

Data exchange format

Every data exchange has to be formatted in JSON. Please make sure you send valid JSON. Our

JSON-Parser is strict (and will, for example, not accept single quotes). The POST field “data”

acts as a container for the JSON.

You can mail us the example JSON you would like to use and we configure this within 10 min

on our platform for you. After completing the job configuration we send you a draft of the

JSON you would receive from us.

IDs

The “id”-Key is a reserved key for you to have a reference within your data. You should use it

to reference new jobunits posted to us and can use it to pull selected jobunits again if they

weren’t transmitted properly.

Errors

Successful response contain the 200 Status-Code and application/json Content-Type. If you

get a 404 Error without any content check your request-url. If you get the 412 Precondition

Failed error code, your access is not yet available. Any other 4xx error codes are explained in

the section below. If you get a 5xx Status-Code, please contact it@crowdguru.de.

Methods

Seed new entries

Send your new entry data in the POST[data] field with Content-Type application/x-www-

form-urlencoded.

Please make sure your data structure matches exactly your example JSON, or you will get a

400 error. If your structure has changed, please contact us, you can't change our configuration

remotely at this moment.

HTTP-Method: POST, URL: <Base-URL>

POST[data]= [{},{}] new entries in JSON array

Content-Type: application/x-www-form-urlencoded

e.g. https://username:password@crowdmodul.crowdguru.de/api/a525fdasedfg23

Possible errors:

 412 Preconditions Failed

 400 Bad Request; Content: POST[data] is empty

 400 Bad Request; Content: JSON syntax errors

 400 Bad Request; Content: JSON structure differs from config

Example-Response:

{ “1236”: 1, “1237”: 2 }

Fetch all completed units

HTTP-Method: GET, URL: <Base-URL>

Response has Content-Type: application/json

e.g. https://username:password@crowdmodul.crowdguru.de/api/a525fdasedfg23/new

Possible errors:

 412 Preconditions Failed

Example-Response (no new completed units):

[]

Example-Response (2 entries):

[

 { “id”: 1234, “title”: “hello world” },

 { “id”: 1235, “title”: “hello world” }

]

Fetch single completed unit by your ID

HTTP-Method: GET, URL: <Base-URL>/id

e.g. https://username:password@crowdmodul.crowdguru.de/api/a525fdasedfg23/1

Possible errors:

 412 Preconditions Failed

 404 Not Found; Content: entry '<id>' not exists

Example-Response:

{ “id”: 1234, “title”: “hello world” }

ACK for the completed data you received

To verify that you received your completed units successfully we need you to acknowledge

the received unitsIds to us. We expect your product ID’s, the list must contain strings or

integers.

HTTP-Method: POST, URL: <Base-URL>/jobId/received

POST[units]= [1234,1235]

Content-Type: application/x-www-form-urlencoded

Example-Response:

{1234 => true, 1235 => true}

The results include a list of id’s with the flag true or false that shows if we could set the

entries to exported or not.

eventdriven push from our side

HTTP-Method: POST | PUT | GET, URL: <YOUR-URL>

Example-Response:

[

 { “id”: 1234, “title”: “hello world” },

 { “id”: 1235, “title”: “hello world” }

]

If we get HTTP 200 back we will mark this data entry as delivered, otherwise we’ll try to

deliver it later.

Delete a jobunit

HTTP-Method: DELETE, URL: <Base-URL>/id

POST[data]= new entry data in JSON

Possible errors:

 412 Preconditions Failed

Example-Response:

OK

Update a jobunit before work has begun on it

HTTP-Method: PUT, URL: <Base-URL>/id

POST[data]= new entry data in JSON

Possible errors:

 412 Preconditions Failed

 400 Bad Request; Content: POST[data] is empty

 400 Bad Request; Content: JSON syntax errors

 400 Bad Request; Content: JSON structure differs from config

Example-Response:

OK

Same behavior as POST request.

Send unit based feedback to CG

HTTP-Method: POST, URL: <Base-URL>/feedback

POST[data]= [{id: ‘’, text:’’,data:’’, rating:’’}, ...]

Content-Type: application/x-www-form-urlencoded

Possible errors:

 412 Preconditions Failed

 400 Bad Request; Content: POST[data] is empty

 400 Bad Request; Content: JSON syntax errors

Example-Response:

{ “1236”: true, “1237”: false }

We should receive a feedback for every unit.

id

Unit-id to identify previously posted unit.

[id_field = “cg_id”]

“cg_id” or “client_id”, while client_id means id will be interpreted as the id given by the client

when unit was sent to us. “cg_id” means we lookup in the internal crowdguru id column we

create and return when a unit was posted to us.

qa_user_id

id of the person checking on customer side.

text

Message e.g. "wrong categorisation".

data

e.g. {text : [true,false,true], image:false}

or {link:false,color:false}

we can use this data to validate your feedback.

rating

default: 0

A basic rating either wrong (0) or right (1)

Crowd Guru - CrowdProvider API

This part of the API is used by customers to take advantage of our crowd inside their own

Platform. We provide the possibility to embed external sites as an iFrame (including custom

encrypted attributes to the iFrame-URL, e.g. GuruID, age, gender, location.) The following

endpoints are mainly for tracking purposes. But we are also receiving payment information

and rejection messages.

Start unit

HTTP-Method: POST, URL: <Base-URL>/v2/unit/start

POST[data]={

 "jobID": "a",

 "unitID": "123",

 "guruID": "xxx",

 "jobName": "test"

}

Content-Type: application/x-www-form-urlencoded

Possible errors:

 412 Preconditions Failed

 412 Parameter missmatch

 400 Bad Request; Content: POST[data] is empty

 400 Bad Request; Content: JSON syntax errors

Example-Response:

{ “success”: true }

Tracking: You tell us that a unit has been started.

Finish unit

HTTP-Method: POST, URL: <Base-URL>/v2/unit/finish

POST[data]={

 "jobID": "a",

 "unitID" : "123",

 "guruID": "xxx",

 "unitValue": 23 //euro cent

}

Content-Type: application/x-www-form-urlencoded

Possible errors:

 412 Preconditions Failed

 412 Parameter missmatch

 400 Bad Request; Content: POST[data] is empty

 400 Bad Request; Content: JSON syntax errors

Example-Response:

{ “success”: true }

Tracking: You tell us that a unit has been finished.

Approve unit

HTTP-Method: POST, URL: <Base-URL>/v2/unit/approve

POST[data]={

 "jobID": "a",

 "unitID" : "123"

}

Content-Type: application/x-www-form-urlencoded

Possible errors:

 412 Preconditions Failed

 412 Parameter missmatch

 400 Bad Request; Content: POST[data] is empty

 400 Bad Request; Content: JSON syntax errors

Example-Response:

{ “success”: true }

Feedback: you tell us that a unit has been approved

Reject unit

HTTP-Method: POST, URL: <Base-URL>/v2/unit/reject

POST[data]={

 "jobID": "a",

 "unitID" : "123",

 "guruID": "xxx",

 "mode" : "hardreject|softreject",

 "message": "this is a plaintext msg that will be sent as an email, it can contain carriage

returns "

}

Content-Type: application/x-www-form-urlencoded

Possible errors:

 412 Preconditions Failed

 412 Parameter missmatch

 400 Bad Request; Content: POST[data] is empty

 400 Bad Request; Content: JSON syntax errors

Example-Response:

{ “success”: true }

Feedback: You tell us that a unit has been rejected, you also provide the reason. A hardreject

will block the Guru for this job.

